My professional credentials include a Ph.D. in Mathematics from Cornell University, a previous teaching position at Harvard University, and several teaching awards from both institutions. I have designed and taught math courses at almost every level, so I am intimately familiar with the content as well as the current best practices for teaching those topics. My supportive attitude and student-driven approach to teaching math has earned me a nearly perfect course evaluation record across nine years of teaching in higher ed.

Professional Experience

Content Improvement Author

Outlier.org

August 2021 - July 2022

Oversaw projects to improve online calculus, precalculus, and college algebra courses based on student feedback and performance data. Designed and developed interactive lessons along with assessment and feedback.

Math Consultant and Content Creator

Outlier.org

April 2021 - August 2021

Provided insights and guidance on mathematical content during the development of online precalculus and college algebra courses. Collaborated with course instructor and video team to create instructional material and lesson plans.

Mathematics Teaching Faculty

Harvard University

July 2018 - June 2021

Led and supported a teaching team for multi-section coordinated courses. Developed and taught calculus and linear algebra classes in an active-learning style. Produced instructional videos and redesigned courses for online learning.

Teaching Assistant

Cornell University

August 2012 - May 2018

Designed and taught a flipped-classroom course in second-semester calculus. Led review and practice sessions for students taking calculus and other undergraduate mathematics courses.

Mathematics Tutor

RIT Academic Support Center

November 2008 - May 2012

Supported math and science students through one-on-one support in a drop-in tutoring center.

Education

Ph.D. in Mathematics

Cornell University

May 2018

My graduate research focused on 3- and 4-dimensional objects (called "manifolds"). In particular, my thesis focused on ways in which 2-dimensional objects ("surfaces") fit inside manifolds and how the structure of one informs the other.

B.S. in Computational Mathematics

Rochester Institute of Technology

May 2012

Graduated with Highest Honors and Distinction in Mathematics, with a GPA of 4.0